Устройство и принцип работы гидротрансформатора
Принцип работы гидротрансформатора
Конструкцией любой гидромеханической автоматической коробкой передач предусмотрено наличие гидротрансформатора. Без него сама по себе АКПП теряет всякий смысл и недооценивать роль этого устройства в современных трансмиссионных система совершенно недопустимо. Сегодня мы ближе познакомимся с конструкцией и принципом его работы, а также разберёмся в некоторых неполадках.
При чем тут гидромуфта
Есть такое нехитрое устройство, которое называется гидромеханическая муфта. Если разобраться в её конструкции и понять как она работает, с любым гидротрансформатором проблем не возникнет. Так вот, гидравлическая муфта служит для передачи вращения от одного агрегата на другой. В принципе, для этого же можно использовать и обычный жёсткий вал, но когда стоит задача передать крутящий момент плавно и без жёсткой связи, без гидромуфты не обойтись.
Устроена она довольно просто: есть ведущий и ведомый вал, на которых установлены крыльчатки, не связанные между собой и способные вращаться независимо друг от друга. Обе крыльчатки помещены в единый корпус, который заполнен трансмиссионной жидкостью. Лопасти обеих крыльчаток расположены на небольшом расстоянии друг от друга, поэтому при вращении ведущего вала энергия вращения неминуемо передаётся на ведомую, жёстко связанную с ведомым валом. За счёт того, что трансмиссионная жидкость имеет определённую вязкость, крутящий момент передаётся плавно, без рывков и без особых потерь. Собственно, гидротрансформатор это и есть гидромуфта, только с более сложной конструкцией и более широкими возможностями.
Как устроен гидротрансформатор
Мы выяснили, что гидромуфта состоит из трёх основных элементов:
- Ведущая турбина.
- Ведомая турбина.
- Корпус с трансмиссионной жидкостью.
Конструкция гидротрансформатора отличается в общих чертах только наличием ещё одного элемента — реактора. Он представляет собой ещё одно колесо с лопастями, которое в принципе управляет работой гидротрансформатора.
Принцип работы гидротрансформатора тоже прост. Реактор свободно вращается на ведущем валу и до поры до времени образует одно целое с ведущей турбиной. Но только до тех пор, пока ведущее и ведомое лопастные колеса вращаются с разновеликими скоростями. Применительно к двигателю и к АКПП, гидротрансформатор выполняет роль сцепления в этом случае. Как только угловые скорости ведущего и ведомого колес выравниваются, реактор растормаживается и весь гидротрансформатор работает точно так же, как и гидромуфта.
Роль реактора в гидротрансформаторе
Конструктивно реактор устроен так, что его лопасти имеют точно заданный профиль и угол наклона. Благодаря этому и центробежной силе, скорость выбрасываемой трансмиссионной жидкости из лопастей реактора постоянно возрастает с увеличением скорости вращения коленчатого вала. Поэтому жидкость постоянно воздействует на лопасти ведущего колеса, стараясь его подтолкнуть. Это сделано вот для чего:
- При увеличении скорости циркуляции трансмиссионной жидкости при стабильном режиме работы трансформатора, а точнее, стабильных оборотах коленвала, энергия внутри устройства накапливается, крутящий момент, естественно, увеличивается и передаётся на ведомый вал, на коробку передач.
- Независимо от того, какое усилие прикладывают ведущие колеса для движения и преодоления препятствий, крутящий момент в гидротрансформаторе (режим его работы) изменяется бесступенчато и плавно.
Практически это выглядит так — автомобиль движется по ровной дороге, не меняя оборотов двигателя, но стоит ему начать преодолевать подъём, как усилие на ведущих колёсах изменится, автомобиль теряет скорость, следовательно, скорость вращения жидкости внутри трансформатора возрастает, автоматически и бесступенчато увеличивая усилие на ведущих колёсах. Примерно так вела бы себя обычная механическая коробка передач, но меняя передаточные отношения шестерён.
Признаки неисправности гидротрансформатора
Современные автоматические коробки с ног до головы окружены управляющей электроникой, а тот трансформатор, который мы только что рассмотрели, применялся ещё в 50-х годах прошлого века. Тем не менее общие проблемы старых и новых АКПП остаются:
- Механический шум во время переключения передач говорит об износе опорных подшипников.
- Вибрация на скоростях около 80 км/ч говорят о засорённой рабочей жидкости, которая срывает блокировку гидротрансформатора.
- Срыв шлица на турбинном колесе.
- Появившийся внезапно специфический запах говорит о перегреве АКПП и о возможном плавлении полимерных элементов.
- Течи сальника гидротрансформатора.
- При контроле уровня трансмиссионной жидкости иногда можно обнаружить на щупе металлическую пудру. Это говорит об износе торцевой шайбы, который стал следствием некорректной работы гидротрансформатора.
Кроме этих неисправностей, могут возникнуть проблемы с управляющей электроникой, двигатель может принудительно глохнуть при переключении передач или передачи могут переключаться не соответствуя режиму движения.
Ремонт гидротрансформатора проводится только а условиях специальной мастерской и квалифицированными специалистами, поскольку при восстановлении или замене деталей устройства могут возникнуть непредвиденные сложности. Берегите свои автоматы, удачных и увлекательных всем путешествий!
Гидротрансформатор. Общее устройство и принцип действия.
|
Гидротрансформатор (ГТ) (или torque converter в зарубежных источниках) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки передач (АКПП) и состоит из следующих основных частей (рис. 2):
- насосное колесо или насос (pump);
- плита блокировки гидротрансформатора (lock – up piston);
- турбинное колесо или турбина (turbine);
- статор (stator);
- обгонная муфта (one – way clutch).
Для иллюстрации принципа действия гидротрансформатора как элемента, передающего крутящий момент, воспользуемся примером с двумя вентиляторами (рис.3). Один вентилятор (насос) включён в сеть и создаёт поток воздуха. Второй вентилятор (турбина) – выключен, однако, его лопатки, воспринимая поток воздуха, создаваемого насосом, вращаются. Скорость вращения турбины меньше, чем у насоса, она как бы проскальзывает по отношению к насосу. Если применить этот пример по отношению к гидротрансформатора, то в нём в качестве вентилятора, включённого в сеть (насоса), выступает крыльчатка насосного колеса.
Насосное колесо механически связано с двигателем. В качестве выключенного вентилятора (турбины) выступает турбинное колесо, соединённое через шлицы с валом АКПП. Подобно вентилятору – насосу, крыльчатка насосного колеса гидротрансформатора, вращаясь, создаёт поток, только уже не воздуха, а жидкости (масла). Поток масла, как и в случае с вентилятором – турбиной, заставляет вращаться турбинное колесо гидротрансформатора. В данном случае гидротрансформатор работает как обыкновенная гидромуфта, лишь передавая посредством жидкости крутящий момент от двигателя на вал АКПП, не увеличивая его. Увеличение оборотов двигателя не приводит к сколь – ни будь существенному увеличению передаваемого крутящего момента.
Снова возвратимся к иллюстрации с вентиляторами. Поток воздуха, крутящий лопатки вентилятора – турбины, рассеивается впустую в пространстве. Если же этот поток, сохраняющий значительную остаточную энергию, направить снова к вентилятору – насосу, он начнёт вращаться быстрее, создавая более мощный поток воздуха, направленный к вентилятору – турбине. Тот, соответственно, тоже начнёт вращаться быстрее. Это явление известно как преобразование (увеличение) крутящего момента.
В гидротрансформаторе в процесс преобразования крутящего момента помимо насосного и турбинного колёс включён статор, который изменяет направление потока жидкости. Подобно воздуху, вращавшему лопатки вентилятора – турбины, поток жидкости (масла), вращавший турбинное колесо ГТ, всё ещё обладает значительной остаточной энергией. Статор направляет этот поток обратно на крыльчатку насосного колеса, заставляя её вращаться быстрее, увеличивая тем самым крутящий момент. Чем меньше скорость вращения турбинного колеса гидротрансформатора по отношению к скорости вращения насосного колеса, тем большей остаточной энергией обладает масло, возвращаемое статором на насос, и тем большим будет момент, создаваемый в гидротрансформаторе.
Турбина всегда имеет скорость вращения меньшую, чем насос. Это соотношение скоростей вращения турбины и насоса максимально при неподвижном автомобиле и уменьшается с увеличением его скорости. Поскольку статор связан с гидротрансформатором через обгонную муфту, которая может вращаться только в одном направлении, то, благодаря особой форме лопаток статора и турбины поток масла направляется на обратную сторону лопаток статора (рис. 4), благодаря чему статор заклинивается и остаётся неподвижным, передавая на вход насоса максимальное количество остаточной энергии масла, сохранившееся после вращения им турбины. Такой режим работы гидротрансформатора обеспечивает максимальную передачу им крутящего момента. Например, при трогании с места гидротрансформатор увеличивает крутящий момент почти в три раза.
По мере разгона автомобиля проскальзывание турбины относительно насоса уменьшается и наступает момент, когда поток масла подхватывает колесо статора и начинает вращать его в сторону свободного хода обгонной муфты (см. рис. 5). Гидротрансформатор перестаёт увеличивать крутящий момент и переходит в режим обычной гидромуфты. В таком режиме гидротрансформатор имеет КПД, не превышающий 85%, что приводит к выделению в нём излишнего тепла и, в конечном счёте, увеличению расхода топлива двигателем автомобиля.
Для устранения этого недостатка используется блокировочная плита (см. рис. 6а ). Она механически связана с турбиной, однако, может перемещаться влево и вправо. Для её смещения влево поток масла, питающий гидротрансформатор, подаётся в пространство между плитой и корпусом гидротрансформатора, обеспечивая их механическую развязку, то есть, плита в таком положении никак не влияет на работу гидротрансформатора.
При достижении автомобилем высокой скорости по особой команде от устройства управления АКПП поток масла изменяется так, что он прижимает блокировочную плиту вправо к корпусу гидротрансформатора ( см. рис. 6б ). Для увеличения силы сцепления на внутреннюю сторону корпуса наносится фрикционный слой. Происходит механическая блокировка насоса и турбины посредством плиты. Гидротрансформатор перестаёт выполнять свои функции. Двигатель жёстко связывается с входным валом АКПП. Естественно, при малейшем торможении автомобиля блокировка немедленно выключается.
Существуют и другие способы блокировки гидротрансформаторов, однако, суть всех способов одна – исключить проскальзывание турбины относительно насоса. В зарубежных источниках такой режим работы гидротрансформатора называется Lock – up (лок – ап).
Корпус гидротрансформатора выполняет ещё одну очень важную функцию. С его помощью осуществляется привод масляного насоса АКПП. Для этого используется дополнительный валик, размещённый внутри вала турбины. С корпусом гидротрансформатора этот валик связан шлицевым соединением. Во многих АКПП масляный насос вращается непосредственно горловиной гидротрансформатора.
![]() ![]() |
Рис. 2. Общее устройство гидротрансформатора |
![]() ![]() |
Рис. 3. Пример с вентиляторами |
![]() ![]() |
Рис. 4. Статор ГТ удерживается обгонной муфтой Рис. 5. Статор ГТ вращается свободно |
![]() ![]() |
Рис. 6а. Применение блокировочной плиты |
![]() ![]() |
Рис. 6б. Изменение положения блокировочной плиты |
Программа по сотрудничеству Форд Мондео клуба с магазинами, сервисами И.Т.Д. Программа подразумевает особые условия для членов клуба.
Партнер клуба компания Автономия.
Оригинальные и не оригинальные запчасти и аксессуары. Подбор, доставка, заказ.
Компания Автономия предлагает новую услугу “ремонт без проблем“.
Общее устройство и принцип действия гидротрансформатора
Гидротрансформатор (ГТ) (torque converter) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки переключения передач (АКПП) и состоит из следующих основных частей:
— насосное колесо или насос (pump);
— плита блокировки ГТ (lock — up piston);
— турбинное колесо или турбина (turbine);
— реактор;
— обгонная муфта (one — way clutch).
Насосное колесо механически связано с двигателем. В качестве выключенного вентилятора (турбины) выступает турбинное колесо, соединенное через шлицы с валом АКПП. Подобно вентилятору — насосу, крыльчатка насосного колеса ГТ, вращаясь, создает поток жидкости (масла). Поток масла заставляет вращаться турбинное колесо ГТ. В данном случае ГТ работает как обыкновенная гидромуфта, лишь передавая посредством жидкости крутящий момент от двигателя на вал АКП, не увеличивая его. Увеличение оборотов двигателя не приводит к сколь — нибудь существенному увеличению передаваемого крутящего момента.
В ГТ в процесс преобразования крутящего момента помимо насосного и турбинного колес включен реактор, который изменяет направление потока жидкости. Подобно воздуху, вращавшему лопатки вентилятора — турбины, поток жидкости (масла), вращавший турбинное колесо ГТ, все еще обладает значительной остаточной энергией. Статор направляет этот поток обратно на крыльчатку насосного колеса, заставляя ее вращаться быстрее, увеличивая тем самым крутящий момент. Чем меньше скорость вращения турбинного колеса ГТ по отношению к скорости вращения насосного колеса, тем большей остаточной энергией обладает масло, возвращаемое статором на насос, и тем большим будет момент, создаваемый в ГТ.
По аналогичной схеме работает автоматическая трансмиссия и при старте с места. Только теперь самое время вспомнить про педаль газа, нажатие на которую увеличивает обороты коленчатого вала, а значит, и насосного колеса, и про то, что сначала автомобиль, а следовательно, и турбина находились в неподвижном состоянии, но внутреннее проскальзывание в гидротрансформаторе не мешало двигателю работать на холостом ходу (эффект выжатой педали сцепления). В этом случае крутящий момент трансформируется в максимально возможное число раз. Зато когда достигнута необходимая скорость, надобность в преобразовании крутящего момента отпадает. Гидротрансформатор посредством автоматически действующей блокировки превращается в звено, жестко связывающее его ведущий и ведомый валы. Такая блокировка исключает внутренние потери, увеличивает значение КПД передачи, уменьшает расход топлива в установившемся режиме движения, а при замедлении повышает эффективность торможения двигателем. Кстати, одновременно с целью снижения все тех же потерь реактор освобождается и начинает вращаться вместе с насосным и турбинным колесом.
Турбина всегда имеет скорость вращения меньшую, чем насос. Это соотношение скоростей вращения турбины и насоса максимально при неподвижном автомобиле и уменьшается с увеличением его скорости. Поскольку реактор связан с ГТ через обгонную муфту, которая может вращаться только в одном направлении, то, благодаря особой форме лопаток реактора и турбины поток масла направляется на обратную сторону лопаток реактора, благодаря чему реактор заклинивается и остается неподвижным, передавая на вход насоса максимальное количество остаточной энергии масла, сохранившееся после вращения им турбины. Такой режим работы ГТ обеспечивает максимальную передачу им крутящего момента. Например, при трогании с места ГТ увеличивает крутящий момент почти в три раза.
По мере разгона автомобиля проскальзывание турбины относительно насоса уменьшается и наступает момент, когда поток масла подхватывает колесо реактора и начинает вращать его в сторону свободного хода обгонной муфты. ГТ перестает увеличивать крутящий момент и переходит в режим обычной гидромуфты. В таком режиме ГТ имеет КПД, не превышающий 85%, что приводит к выделению в нем излишнего тепла и, в конечном счете, увеличению расхода топлива двигателем автомобиля. Для устранения этого недостатка используется блокировочная плита. Она механически связана с турбиной, однако, может перемещаться влево и вправо. Для ее смещения влево поток масла, питающий ГТ, подается в пространство между плитой и корпусом ГТ, обеспечивая их механическую развязку, то есть, плита в таком положении никак не влияет на работу ГТ. При достижении автомобилем высокой скорости по особой команде от устройства управления АКПП поток масла изменяется так, что он прижимает блокировочную плиту вправо к корпусу ГТ. Для увеличения силы сцепления на внутреннюю сторону корпуса наносится фрикционный слой. Происходит механическая блокировка насоса и турбины посредством плиты. ГТ перестает выполнять свои функции. Двигатель жестко связывается с входным валом АКПП. Естественно, при малейшем торможении автомобиля блокировка немедленно выключается.