Солнечный коллектор для отопления
Как сделать солнечные коллекторы для отопления дома
Чем солнечные батареи отличаются от коллекторов
Первое, что вам нужно знать — это отличия солнечной батареи и коллектора. В батарее тепловая энергия преобразуется в электрическую, аккумулируется и может быть направлена на работу электроприборов, нагрев теплоносителя и т.п. Чтобы собрать солнечную батарею, нужны фотоэлементы, последовательно соединенные в корпусе.
Коллектор предназначен для отопления дома непосредственно с помощью тепловой энергии. Солнце нагревает воду, поступающую в отопительную систему, эта же вода может быть использована для автономного горячего водоснабжения. Фотоэлементы для устройства коллектора не требуются, и материалы для установки вы вполне можете собрать в своем подручном хозяйстве.
Устройство солнечного коллектора
Принцип работы солнечного коллектора основан на законах физики — лучи попадают в короб (замкнутое пространство), трансформируются в теплоэнергию и накапливаются. Конечно, в коллекторе и в трубах часть энергии теряется, но даже при КПД 60% солнечные коллекторы — достойная альтернатива традиционному отоплению. На севере Европы так обогревают половину частных домов, вторую половину добирают печным отоплением древесиной.
Составные части гидравлической системы солнечного коллектора:
Панель — это радиатор из труб в коробе с верхней стеклянной стенкой. Панель обычно устанавливают на крыше или в другом незатененном месте. Вода поступает в радиаторы, нагревается и перетекает в аванкамеру, где холодная жидкость замещается горячей. Таким образом сохраняется давление в системе. Горячий теплоноситель переходит в накопительный бак и распределяется по отопительной системе.
Подходящее место для панели — южный склон крыши с углом наклона 35-45о. Для эффективного нагрева радиатор и короб внутри нужно покрасить черной краской.
Делаем солнечный коллектор
Солнечная панель
1. Сначала я сбил фанерный короб и утеплил его пенопластом.
2. Для радиатора нарезал широкие трубы и соединил их более тонкими.
3. Радиатор и короб покрасил в черный цвет.
4. Короб закрыл стеклом.
Схема солнечной панели
Аванкамера и бак
5. Для накопительного бака подобрал емкость в 300 литров. Если вы не найдете большой бак, можете заменить его несколькими соединенными между собой емкостями.
6. Бак поместил в фанерный короб, пустоты заполнил пенопластом для теплоизоляции.
7. Для аванкамеры тоже нужен бак, но поменьше — до 40 л. Аванкамера должна быть герметично закрытой, с шар-краном или подобным устройством.
Собираем систему
8. Установил в накопительный бак аванкамеру так, чтобы уровень воды в накопителе был на 80 см ниже. При проектировании системы рассчитайте, какую нагрузку выдержат перекрытия, на которые вы установите коллектор.
9. Установил солнечную панель на крыше — между накопителем и радиатором расстояние в 80 см.
10. Присоединил дренажные трубы накопителя и аванкамеры.
11. Установил трубы холодной и горячей воды к аванкамере, смесителям, накопительному баку, радиатору. На участках с повышенным напором воды использовал трубы в полдюйма, на остальных — дюймовые. При соединении устанавливал переходники, фитинги, сгоны и т.д.
12. Через нижние отверстия дренажа залил воду в установку.
13. Аванкамеру присоединил к водоснабжению и отрегулировал уровень воды в коллекторе.
14. Проверка прошла успешно — стыки не протекли. Значит, установка пригодна к эксплуатации.
Советы по монтажу
-
В системе может скапливаться лишний воздух, для развоздушивания внизу системы установите дренажные краны.
Утеплите все трубы с горячей водой, чтобы не терять тепло.
Для сохранности системы при резком похолодании установите запорный вентиль на трубе с теплоносителем.
Если собираетесь использовать коллектор для нагрева воды, установите смесители, так как температура может быть высокой.
Плоский коллектор — самый дешевый и простой вариант гелио-устройства, эффективно работающий на протяжении солнечного дня. Возможно, для отопления частного жилого дома, одного солнечного коллектора будет недостаточно, но для дачи тепла вполне хватает.
Расчет тепловой мощности от гелиосистем. Окупаемость солнечного коллектора.
Добрый день, уважаемые читатели. Хотим поделиться расчетом выделения тепла солнечными установками.
Солнечная инсоляция – это облучение поверхностей солнечным светом, поток солнечной радиации на поверхность; облучение поверхности или пространства параллельным пучком лучей, поступающих с направления, в котором виден в данный момент центр солнечного диска.
Для примера рассмотрим плоские солнечные панели Vaillant VFK 135/2 VD (Германия). Площадь (абсорбер) одно коллектора 2,33 м2. Сколько тепла можем получить от одного коллектора? Для этого нам нужно знать КПД панели и солнечную инсоляцию в данный период времени. Существует таблица, в которой разбито по месяцам средняя солнечная инсоляция в сутки на 1 м2 площади поверхности.
Берем декабрь – самый наименьший показатель инсоляции в году 1,86 кВт*ч/сутки. Коэффициент КПД одной панели Vaillant VFK 135/2 VD – 78,5%. Следовательно одна панель в декабре месяце (в среднем) 1,86*2,33*0,78=3,38 кВт*ч/сутки. (1,86 кол-во инсоляции в декабре, 2,33 площадь абсорбер солнечной панели, 0,78 КПД солнечной панели).
Теперь приведем пример в июле месяце. 6,28*2,33*0,78=11,41 кВт*ч/сутки. В июле продолжительность солнечного дня составляет 15 часов, 11,41/15=0,76 кВт/час. Для примера этой мощности хватит, что бы нагреть два бойлера по 100 литров при входной температуре 15 градусов до 65 градусов за 16 часов, тем самым обеспечить ГВС (горячим водоснабжением) семью из 3-4 человек.
Окупаемость солнечных коллекторов. Чем выше вклад установки в потребление тепловой мощности потребителем, тем меньше ее срок окупаемости. В основном это коттеджи, гостиницы, санатории, пансионаты и пр. объекты, где большой расход тепловой энергии на нагрев воды, подогрев бассейна, поддержка существующей системы отопления. Для примера возьмем гостиницу на 15 номеров с потреблением воды (50 градусов) 2500 л/сутки. 50 человек по 50 литров горячей воды.
Проведем расчет количества тепла (Q) для нагрева воды от текущей температуры (tт) до заданной (tз). Формула Q = G х Ro х C х (tт – tз) – 2,5*1000*1(50-15)=87500 ккал (2,5 м3 воды, 1000 плотность воды кг/м3, 1 удельная теплоемкость воды, 50 температура нагретой воды, 15 начальная температура воды). Переведем ккал в кВч (1000 ккал = 1,16 кВч). 87,5*1,16=101,5 кВч. Для нагрева 2500 литров воды с 15 до 50 градусов потребуется затратить 101,5 кВч. Исходя из объектов, где используются солнечные панели с таким потреблением воды, рассчитаем их окупаемость. 10 панелей по 2,33 м2 площади абсорбера, получаем общую площадь 23,3 м2. Считаем количество тепла, в сезонное время (апрель-сентябрь). Приводим максимальное значение (условия полное потребление 2500 литров горячей воды в день). 23,3*0,78*4,58=85,37 кВч (Апрель) 23,3*0,78*5,51=100,13 кВч (Май) 23,3*0,78*5,89=107,04 кВч (Июнь) 23,3*0,78*6,28=114,13 кВч (Июль) 23,3*0,78*5,62= 102,13 кВч (Август) 23,3*0,78*4,75 = 86,32 кВч (Сентябрь).
По диаграмме видно, что 10 панелей способны обеспечить пиковую нагрузку на протяжении летнего сезона, апрель и сентябрь вряд ли будут нуждаться в пиковых нагрузках на приготовление горячей воды, а если все таки потребуется, есть альтернативный источник тепла к примеру электрический котел. Итого за 6 месяцев суммарно нагревая 2500 литров воды с 15 до 50 градусов каждый день солнечная установка из десяти плоских панелей способна выработать до 17300 кВт тепловой энергии в курортный сезон.
Рассчитаем на примере подогрева воды электричеством, 1 кВт возьмем для примера стоимостью 5 руб. Итого за сезон мы бы затратили/сэкономили 17300*5=86500 руб. Что бы рассчитать окупаемость, нужно взять стоимость установки в целом, включая материалы для монтажа, стоимость работ. У каждого производителя солнечных гелиоколлекторов свои нюансы, и своя стоимость. Далее стоит поделить сумму вложения установки на 86500 и получим кол-во лет, за которые она полностью окупится. Сумма вложений 800 тыс рублей, окупаемость = 9 лет.
Отопление дома в зимнее время солнечными коллекторами
С удорожанием природных ресурсов, используемых на освещение и обогрев дома, всё чаще приходится искать им замену – появляются альтернативные источники. Одним из таких вариантов для отопления домов стали солнечные коллекторы.
Их работа основана на поглощении излучения солнца и переработки её в тепло. Использование их летом в ясную погоду понятно. А как работает солнечный коллектор зимой, давайте попробуем разобраться вместе.
Разновидности коллекторов
Особой популярностью пользуются два вида батарей: плоские пластинчатые и вакуумные.
Плоский пластинчатый коллектор
Устройство состоит из пластины (абсорбера), которая улавливает излучение, прозрачного покрытия, пропускающего свет, и теплоизоляционного слоя. Лицевая часть пластины покрывается черной краской, потому что тёмный цвет лучше притягивает лучи солнца. Это может быть также специальное покрытие – например, оксид титана или чёрный никель. Самые производительные абсорберы изготавливают медными.
Прозрачное покрытие делают из поликарбоната, гладкого или рифлёного, либо из укреплённого стекла, у которого содержание металла очень низкое.
Теплоизоляция состоит из трубок, изготовленных из меди или сшитого полиэтилена. По ним разносится теплоноситель. Внутри панели создаётся вакуум, чтобы не было потерь тепла. Если не отбирать тепло, то воду накапливателя можно нагреть до температуры 190–210 градусов.
Вакуумные коллекторы
Трубка этого устройства, по которой течёт теплоноситель, является абсорбером. Она помещается в вакуумный сосуд из прозрачного закалённого стекла.
Такая модель дороже пластинчатого прибора, но она более продуктивна. Здесь можно нагреть воду уже до 250–300 градусов.
Применение коллекторов
Несмотря на высокую стоимость, применение гелиосистем очень популярно как в промышленности, так и в быту.
Владельцы гелиосистем используют солнечные коллекторы не только для отопления домов. Они плодотворно работают для нагрева воды в душе, подогревания бассейнов.
Для производственных целей использование этих устройств более распространено. С их помощью отапливают гостиницы и рестораны. Парогенераторы, работающие на принципе солнечных батарей, приводят в движение разные агрегаты. Опреснители воды тоже делают на основе гелиосистем.
Производительность работы гелиосистем зимой
Использование экосистем летом ни у кого не вызывает сомнений. А вот как работают солнечные батареи зимой, остаётся больным вопросом у пользователей.
Можно с уверенностью сказать, что солнечные коллекторы зимой работают. Разумеется, эффективность их снижается, и требуется дополнительный источник обогрева. Ведь зимой солнце тоже ясно светит, а в пасмурные дни абсорбер собирает отражённый солнечный свет, проходящий сквозь тучи.
Производительность батареи зависит и от угла наклона её по отношению к горизонту. Его выставляют так, чтобы максимально использовать свет в течение короткого зимнего дня.
Снегопады значительно ухудшают работу коллектора, поэтому очистка его от налипания снега – главное условие эксплуатации зимой. Снег – враг для плоского устройства. Вакуумные батареи имеют свойство нагревать всю колбу и самоочищаться. Но иногда и их приходится чистить принудительно.
Преимущества и недостатки коллектора
Главное преимущество гелиосистемы – экологическая чистота.
- При выработке тепла в солнечных батареях не образуются никакие вредные вещества. Он абсолютно безвреден как для человека, так и для природы.
- Очень экономичная установка. Затраты на покупку и монтирование системы возвращаются в течение нескольких лет. В последующие годы батарея работает только в плюс, экономя затраты на обогрев помещения и нагрев воды.
- Использование системы круглый год. Зимой солнце светит не так ярко, но даже сквозь тучи к нам доходит до 75% солнечного излучения, что даёт возможность использовать гелиосистему в любое время года. Несмотря на то что в зимнее время эффективность работы снижается, установка вырабатывает до 50% необходимой энергии.
Единственным недостатком коллектора является его высокая стоимость. Не каждый может позволить себе такую роскошь.
Заключение
Солнечные батареи работают не от прямых солнечных лучей, а от самого света. Даже когда на панели лежит снег, она продолжает работать и вырабатывать энергию, пусть и в меньших количествах. А в солнечные морозные дни воду можно нагреть до кипения.
Прежде чем установить у себя гелиосистему, внимательно изучите особенности погоды в вашей местности, правильно установите угол наклона, и солнечный коллектор не подведёт ни летом, ни зимой.