Svarkin-spb.ru

Описание особенностей двигателя и этапов его разработки

Описание особенностей двигателя и этапов его разработки

Двигатели внутреннего сгорания принадлежат к наиболее распространенному типу тепловых двигателей, т. е. таких двигателей, в которых теплота, выделяющаяся при сгорании топлива, преобразуется в механическую энергию. Тепловые двигатели могут быть разделены на две основные группы:

двигатели внешнего сгорания — паровые машины, паровые турбины, двигатели Стирлинга и т. п. Из двигателей этой группы в учебнике рассмотрены только двигатели Стирлинга, так как их конструкции близки конструкциям двигателей внутреннего сгорания;

двигатели внутреннего сгорания. В двигателях внутреннего сгорания процессы сжигания топлива, выделения теплоты и преобразования части ее в механическую работу происходят непосредственно внутри двигателя. К таким двигателям относятся поршневые и комбинированные двигатели, газовые турбины и реактивные двигатели.

Рекламные предложения на основе ваших интересов:

Принципиальные схемы двигателей внутреннего сгорания показаны на рис. 1.

У поршневого двигателя (рис. 1,а) основными деталями являются: цилиндр крышка (головка) цилиндра; картер поршень; шатун; коленчатый вал впускные и выпускные клапаны. Топливо и необходимый для его сгорания воздух вводятся в объем цилиндра двигателя, ограниченный днищем крышки, стенками цилиндра и днищем поршня. Образующиеся при сгорании газы высокой температуры и давления давят на поршень и перемещают его в цилиндре. Поступательное движение поршня через шатун преобразуется во вращательное коленчатым валом, расположенным в картере. В связи с возвратно-поступательным движением поршня сгорание топлива в поршневых двигателях возможно лишь периодически последовательными порциями, причем сгоранию каждой порции должен предшествовать ряд подготовительных процессов.

В газовых турбинах (рис. 1, б) сжигание топлива происходит в специальной камере сгорания. Топливо в нее подается насосом через форсунку. Воздух, необходимый для горения, нагнетается в камеру сгорания компрессором, установленным на одном валу с рабочим колесом газовой турбины. Продукты сгорания через направляющий аппарат поступают в газовую турбину.

Газовая турбина, имеющая рабочие органы в виде лопаток специального профиля, расположенных на диске и образующих вместе с последним вращающееся рабочее колесо, может работать с высокой частотой вращения. Применение в турбине нескольких последовательно расположенных рядов лопаток (многоступенчатые турбины) позволяет более полно использовать энергию горячих газов. Однако газовые турбины пока уступают по экономичности поршневым двигателям внутреннего сгорания, особенно при работе с неполной нагрузкой, и, кроме того, отличаются большой теплонапряженностью лопаток рабочего колеса, обусловленной их непрерывной работой в среде газов с высокой температурой. При снижении температуры газов, поступающих в турбину, для повышения надежности лопаток уменьшается мощность и ухудшается экономичность турбины. Газовые турбины широко используются в качестве вспомогательных агрегатов в поршневых и реактивных двигателях, а также как самостоятельные силовые установки. Применение жаростойких материалов и охлаждения лопаток, усовершенствование термодинамических схем газовых турбин позволяют улучшить их показатели и расширить область использования.

В жидкостных реактивных двигателях (рис. 1, в) жидкое топливо и окислитель тем или иным способом (например, насосами) подаются под давлением из баков в камеру сгорания. Продукты сгорания расширяются в сопле и вытекают в окружающую среду с большой скоростью. Истечение газов из сопла является причиной возникновения реактивной тяги двигателя.

Положительным свойством реактивных двигателей следует считать то, что реактивная тяга их почти не зависит от скорости движения установки, а мощность ее возрастает с увеличением скорости поступления в двигатель воздуха, т. е. с повышением скорости движения. Это свойство используют при применении турбореактивных двигателей в авиации. Основные недостатки реактивных двигателей — относительно низкая экономичность и сравнительно небольшой срок службы.

Комбинированными двигателями внутреннего сгорания называются двигатели, состоящие из поршневой части и нескольких компрессионных и расширительных машин (или устройств), а также устройств для подвода и отвода теплоты, объединенных между собой общим рабочим телом. В качестве поршневой части комбинированного двигателя используется поршневой двигатель внутреннего сгорания.

Энергия в такой установке передается потребителю валом поршневой части, или валом другой расширительной машины, или обоими валами одновременно. Число компрессионных и расширительных машин, их типы и конструкции, связь их с поршневой частью и между собой определяются назначением комбинированного двигателя, его схемой и условиями эксплуатации. Наиболее компактны и экономичны комбинированные двигатели, в которых продолжение расширения выпускных газов поршневой части осуществляется в газовой турбине, а предварительное сжатие свежего заряда производится в центробежном или осевом компрессоре (последний пока не получил распространения), причем мощность потребителю обычно передается через коленчатый вал поршневой части.

Читать еще:  Что за гаджет такой — авто кружка для кофе и чая?

Поршневой двигатель и газовая турбина в составе комбинированного двигателя удачно дополняют друг друга: в первом наиболее эффективно в механическую работу преобразуется теплота малых объемов газа при высоком давлении, а во второй наилучшим образом используется теплота больших объемов газа при низком давлении.

Комбинированный двигатель, одна из широко распространенных схем которого показана на рис. 2, состоит из поршневой части, в качестве которой используется поршневой двигатель внутреннего сгорания, газовой турбины и компрессора. Выпускные газы после поршневого двигателя, имеющие еще высокие температуру и давление, приводят во вращение лопатки рабочего колеса газовой турбины, которая передает крутящий момент компрессору. Компрессор засасывает воздух из атмосферы и под определенным давлением нагнетает его в цилиндры поршневого двигателя. Увеличение наполнения цилиндров двигателя воздухом путем повышения давления на впуске называют наддувом. При наддуве плотность воздуха повышается и, следовательно, увеличивается свежий заряд, заполняющий цилиндр при впуске, по сравнению с зарядом воздуха в том же двигателе без наддува.

Для сгорания топлива, вводимого в цилиндр, требуется определенная масса воздуха (для полного сгорания 1 кг жидкого топлива теоретически необходимо около 15 кг воздуха). Поэтому чем больше воздуха поступит в цилиндр, тем больше топлива можно сжечь в нем, т. е. получить большую мощность.

Основные преимущества комбинированного двигателя — малые объем и масса, приходящаяся на 1 кВт, а также высокая экономичность, часто превосходящая экономичность обычного поршневого двигателя.

Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания, получившие широкое применение в транспортной и стационарной энергетике. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу, высокую экономичность, их характеристики хорошо согласуются с характеристиками потребителя. Основным недостатком двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием кривошипно-шатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.

В учебнике рассматриваются поршневые и комбинированные двигатели внутреннего сгорания, получившие широкое распространение.

Основные принципы и этапы разработки машин

Проектирование (по ГОСТ 22487-77) – процесс составления описания, необходимого для создания еще несуществующего объекта (алгоритма его функционирования или алгоритма процесса), путем преобразования первичного описания, оптимизации заданных характеристик объекта (или алгоритма его функционирования), устранения некорректности первичного описания и последовательного представления (при необходимости) описаний на различных языках. В условиях учебного заведения (по сравнению с усло­виями предприятий) эти стадии проектирования несколько упрощаются.

Проект (от лат. projectus – брошенный вперед) – совокупность документов и описаний на различных языках (графическом – чертежи, схемы, диаграммы и графики; математическом – формулы и расчеты; инженерных терминов и понятий – тексты описаний, пояснительные записки), необходимая для создания какого-либо сооружения или изделия.

Инженерное проектирование – процесс, в котором научная и техническая информация используется для создания новой системы, устройства или машины, приносящих обществу определенную пользу.

– прямые аналитические методы синтеза (разработаны для ряда простых типовых механизмов);

– эвристические методы проектирования – решение задач проектирования на уровне изобретений (например, алгоритм решения изобретательских задач);

– синтез методами анализа – перебор возможных решений по определенной стратегии (на пример, с помощью генератора случайных чисел – метод Монте-Карло) с проведением сравнительного анализа по совокупности качественных и эксплуатационных показателей (часто используются методы оптимизации – минимизация сформулированной разработчиком целевой функции, определяющей совокупность качественных характеристик изделия);

– системы автоматизированного проектирования или САПР – компьютерная программная среда моделирует объект проектирования и определяет его качественные показатели, после принятия решения – выбора проектировщиком параметров объекта, система в автоматизированном режиме выдает проектную документацию;

– другие методы проектирования.

Основные этапы процесса проектирования.

1.Осознание общественной потребности в разрабатываемом изделии.

2. Техническое задание на проектирование (первичное описание).

3. Анализ существующих технических решений.

4. Разработка функциональной схемы.

5. Разработка структурной схемы.

6. Метрический синтез механизма (синтез кинематической схемы).

7. Статический силовой расчет.

8. Эскизный проект.

9. Кинетостатический силовой расчет.

10. Силовой расчет с учетом трения.

11. Расчет и конструирование деталей и кинематических пар (прочностные расчеты, уравновешивание, балансировка, виброзащита).

Здесь целесообразно выполнить следующие действия:

– уточнить служебное назначение сборочной единицы,

– разобрать кинематическую схему узла (механизма), т. е. выделить составляющие звенья кинематической цепи, уточнить последователь­ность передачи энергии от начального звена по кинематической цепи к конечному звену, выделить неподвижное звено (корпус, стойку и т.п.), относительно которого перемещаются все остальные звенья, уточнить связи между звеньями, т. е. вид кинематических пар, установить служебные функции неподвижного звена и всех подвижных звеньев,

Читать еще:  Почему двигатель «жрет» масло

– рассчитать восприятие звеньями усилия, так как они определяют тип и размеры составляющих их деталей,

– начать конструирование узла с наиболее ответственного звена определить его тип, выделить составляющие его элементы, расчетом или конструктивно определить основные размеры элементов кинематических пар и элементов звена,

– последовательно конструировать все звенья узла, выполняя проработку их элементов,

– эскизно сконструировать неподвижное звено узла,

– уточнить разделение каждого звена на детали,

– разделить каждую деталь на составляющие элементы,

– установить служебную функцию (функции) и назначение каждого элемента и его связи с другими элементами,

– выделить сопрягаемые, прилегающие и свободные поверхности каждого элемента детали,

– установить окончательно форму каждой поверхности и ее положение,

– окончательно оформить изображение каждой детали на изобра­жении сборочной единицы.

12. Технический проект.

13. Рабочий проект (разработка рабочих чертежей деталей, технологии изготовления и сборки).

14. Изготовление опытных образцов.

15. Испытания опытных образцов.

16. Технологическая подготовка серийного производства.

17. Серийное производство изделия.

выборочно несколько выходных звеньев к общему двигателю;

– многопоточные многоподвижные манипулирующие механизмы.

Чем меньше размеры деталей, тем легче осуществить автоматизацию обработки и сборки. В конечном итоге стоимость изготовления нескольких однотипных деталей или элементов может быть уменьшена по сравнению со стоимостью изготовления одной крупной детали.

Эскизный проект – первый этап проектирования (ГОСТ 2.119-73), когда устанавливаются принципиальные конструктивные и схемные решения, дающие общие представления об устройстве и работе изделия.

Проектирование машин выполняют в несколько стадий, установленных ГОСТ 2.103-68. Для единичного производства это:

1. Разработка технического предложения по ГОСТ 2.118-73.

2. Разработка эскизного проекта по ГОСТ 2.119-73.

3. Разработка технического проекта по ГОСТ 2.120-73.

4. Разработка документации для изготовления изделия.

5. Корректировка документации по результатам изготовления и испытания изделия.

Исходные данные – любые объекты и информация, относящиеся к делу (“что мы имеем?”).

Цель – ожидаемые результаты, величины, документы, объекты (“что мы хотим получить?”).

Средства достижения цели– методики проектирования, расчётные формулы, инструментальные средства, источники энергии и информации, конструкторские навыки, опыт (“что и как делать?”).

Технический Проект должен обязательно содержать чертёж общего вида, ведомость технического проекта и пояснительную записку. Чертёж общего вида по ГОСТ 2.119-73 должен дать сведения о конструкции, взаимодействии основных частей, эксплуатационно-технических характеристиках и принципах работы изделия. Ведомость Технического Проекта и Пояснительная Записка, как и все текстовые документы должны содержать исчерпывающую информацию о конструкции, изготовлении, эксплуатации и ремонте изделия. Они оформляются в строгом соответствии с нормами и правилами ЕСКД (ГОСТ 2.104-68; 2.105-79; 2.106-68).

Таким образом, проект приобретает окончательный вид – чертежей и пояснительной записки с расчётами, называемымирабочей документацией, оформленных так, чтобы по ним можно было изготовить изделие и контролировать их производство и эксплуатацию.

Современные методы оптимального проектирования на основе САПР

Схему машины обычно выбирают путем параллельного анализа нескольких вариантов, оценивая их конструктивную целесообразность, совершенство кинематической и силовой схем, стоимость изготовления, энергоемкость, надежность, размеры, металлоемкость и массу, технологичность, степень агрегатности, удобство обслуживания, сборки-разборки, осмотра наладки, регулирования.

Как правило, не существует машины или конструкции, оптималь­ной по всем критериям одновременно. Поэтому расчеты производят для каждого критерия, строят таблицы результатов расчетов и используют их для обоснования выбора оптимального решения.

Зная возможности конструкции по всем критериям, конструктор совместно с заказчиком может обоснованно назначить на каждый из них ограничения, которые, с одной стороны, были бы практически достижимы, а с другой — удовлетворяли требованиям заказчика. Далее путем расчета выявляют конструкции, удовлетворяющие всем ограниче­ниям одновременно.

Такие конструкции и составляют допустимое множество решений, из которого конструктор совместно с заказчиком выбирает оптимальную модель. Если таких конструкций не оказалось, то ограничения могут быть «ослаблены».

Целями создания САПР как организационно-технической (человеко-машинной) системы являются:

1. Повышение качества проектирования вследствие увеличения, анализируемые конструкторских решений и более детального анализа каждого из них. Сокращение срока разработки конструкции за счет автоматизации выполнения чертежных работ и расчетов, обработки исходной и полученной информации;

Читать еще:  Технические характеристики J20A

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 9161 – | 7378 – или читать все.

Проектирование и расчет автомобиля

Создание современного двигателя внутреннего сгорания

Создание современного двигателя внутреннего сгорания сложный процесс, в котором участвуют различные специа­листы. Центральное место в этом процессе занимает разработ­ка конструкторского проекта.

Конструирование двигателя

Конструирование двигателя заключается в инженерной раз­работке его конструкции. Научно-технический прогресс требует от конструкторов создания двигателей с высокими значениями основных показателей, главными из которых являются эконо­мичность, надежность, ресурс, материалоемкость, доступность изготовления и простота обслуживания. Для того чтобы созда­ваемый двигатель удовлетворял перечисленным требованиям, необходимо при его проектировании использовать новые кон­структорские решения. Это не отрицает преемственности кон­струкции и возможности применения хорошо зарекомендовав­ших себя конструкций, а также узлов и деталей.

Научно-технический прогресс в области двигателестроения зависит от развития отраслей, поставляющих материалы, ком­плектующие изделия, топлива и масла. Он осуществляется по комплексным планам, разрабатываемым на основе перспек­тивных типажей двигателей, под которыми понимается обосно­ванная совокупность минимального числа типов и размеров двигателей. Типаж определяется мощностным рядом, в который входят двигатели» одинаковые по компоновке и кон­струкции основных узлов и деталей. Целесообразно, чтобы вновь создаваемый двигатель являлся одним из элементов мощностного ряда, что обусловит сокращение сроков освоения новой конструкции и повышение качества изготовления двига­теля. Однако несмотря на все преимущества, связанные с вне­дрением разработанных типажей, в качестве базовой модели может быть принята принципиально новая и целесообразная с технико-экономической точки зрения конструкция двигателя.

При создании новых двигателей и их семейств большое внимание уделяется степени их стандартизации и унификации, которая оценивается долей стандартизованных и унифициро­ванных элементов во всей конструкции двигателя. Степень уни­фикации должна определяться оптимальностью общего реше­ния компоновки конструкции и ее экономической целесообразностью.

Непрерывное форсирование современных двигателей по удельной мощности сопровождается ростом температур и напряжений в их деталях. Поэтому большую роль при создании современных двигателей приобретают расчеты на прочность.

Расчет на прочность деталей двигателя

Расчет на прочность деталей двигателя включает следую­щие основные этапы; составление расчетной схемы, отражаю­щей наиболее существенные особенности конструкции и условий нагружения деталей, анализ этой схемы с помощью современных методов расчета; формулировку на основе прове­денного анализа практических выводов применительно к реаль­ной конструкции.

Используемые ранее (при малых и средних уровнях форсирования, часто очень упрошенные, методы рас­чета на прочность деталей двигателя не вызывали возражении, так как заложенные в самих конструкциях двигателей запасы прочности при средних параметрах рабочего процесса были ве­лики. В настоящее время требуются методы расчета, значи­тельно более точно учитывающие геометрию деталей и усло­вия на нагружения.

Особенности проектирования современных двигателей

Особенности проектирования современных двигателей, предусматривающего (наряду с повышением качества) сниже­ние его сроков при усложнении конструкции двигателя, обусло­вили создание автоматизированного проектирования. При этом особенно возрастает роль расчетов, которые должны быть ориентированы на систематическое применение ЭВМ и выполнены на качественно новом, более высоком уровне.

1) Конструкторы должны подготовить полный объ­ем конструкторской доку­ментации позволяющий изготовить и испытать двигатель, а также нала­дить его выпуск в тре­буемом количестве.

2) Новизна вновь создава­емого двигателя опреде­ляется прогрессивностью его параметров.

3) Типажи разрабатывают на определенный период времени с уметом перс­пектив развития отраслей, использующих соответст­вующий тип двигателей, что значительно эконо­мит затраты на производ­ство, эксплуатацию и ре­монт двигателей.

4) В основе мощностного ряда лежит базовая мо­дель, имеющая лучший комплекс основных для данного типа двигателей параметров.

5) Повышение степени унификации во вновь создаваемых двигателях поз­воляет наладить производство унифицированных деталей и агрегатов на специализированных предприятиях с большой программой выпуска, что увеличивает производительность труда и повы­шает качество продукции.

6) Основная цель расчета на прочность – обоснова­ние таких параметров и размеров деталей и узлов двигателя при которых обеспечиваете надлежащая работа двигателя при эк­сплуатации в течение тре­буемою ресурса. При этом расчет, существенно сокращает время и сред­ства, отводимые на чрезвычайно объемные экс­периментальные работы, связанные с созданием и доводкой двигателя, име­ющего большую стои­мость.

7) Наиболее общими тре­бованиями являются про­стота конструкции, ком­пактность и наименьшая масса.

8) В двигателях, имеющих кривошипно-шатунный механизм, оси цилиндров расположены перпендику­лярно оси коленчатого вала, причем в большин­стве конструкций ОКИ они пересекают ее.

Ссылка на основную публикацию
Adblock
detector